Biogeochemistry with many tracers at high resolution ## Positive Definite Redi - Biogeochem may require positive definite advection/diffusion (nonlinear equations sensitive to over/undershoots) - Interest in marginal species - Steep gradients: ## Positive Definite Redi - Biogeochem may require positive definite advection/diffusion (nonlinear equations sensitive to over/undershoots) - Interest in marginal species - Steep gradients: ## Positive Definite Redi - Biogeochem may require positive definite advection/diffusion (nonlinear equations sensitive to over/undershoots) - Interest in marginal species Steep gradients: Scale outgoing flux to less than tracer content of cell [Bott/Smolarkiewicz] Used for aquaplanet and phytoplankton mutations # Many passive tracers #### Added to MITgcm kernel: - Full support for ~3000 tracers (incl. diagnostics) [Chris Hill] - Long tracer time step (pkg/longstep) #### Makes possible: - 78 species (99 ptracers) - cs510 grid (1/6° resolution) at 3-4 months/day on 360 cores. # Many passive tracers #### Added to MITgcm kernel: - Full support for ~3000 tracers (incl. diagnostics) [Chris Hill] - Long tracer time step (pkg/longstep) #### Makes possible: - 78 species (99 ptracers) - cs510 grid (1/6° resolution) at 3-4 months/day on 360 cores. DO_STATEVARS_DIAGS 16.85s DO_OCEANIC_PHYS DYNAMICS 33.64s SOLVE FOR PRESSURE 13.27s BLOCKING_EXCHANGES 51.54s THERMODYNAMICS 33.8s ptracer adv/diff LONGSTEP_THERMODYNAMICS bio eq. GCHEM_FORCING_SEP 100.7s